34 research outputs found

    A hardware-deployable neuromorphic solution for encoding and classification of electronic nose data

    Get PDF
    In several application domains, electronic nose systems employing conventional data processing approaches incur substantial power and computational costs and limitations, such as significant latency and poor accuracy for classification. Recent developments in spike-based bio-inspired approaches have delivered solutions for the highly accurate classification of multivariate sensor data with minimized computational and power requirements. Although these methods have addressed issues related to efficient data processing and classification accuracy, other areas, such as reducing the processing latency to support real-time application and deploying spike-based solutions on supported hardware, have yet to be studied in detail. Through this investigation, we proposed a spiking neural network (SNN)-based classifier, implemented in a chip-emulation-based development environment, that can be seamlessly deployed on a neuromorphic system-on-a-chip (NSoC). Under three different scenarios of increasing complexity, the SNN was determined to be able to classify real-valued sensor data with greater than 90% accuracy and with a maximum latency of 3 s on the software-based platform. Highlights of this work included the design and implementation of a novel encoder for artificial olfactory systems, implementation of unsupervised spike-timing-dependent plasticity (STDP) for learning, and a foundational study on early classification capability using the SNN-based classifier

    Genetic Screening for TLR7 Variants in Young and Previously Healthy Men With Severe COVID-19

    Get PDF
    Introduction: Loss-of-function TLR7 variants have been recently reported in a small number of males to underlie strong predisposition to severe COVID-19. We aimed to determine the presence of these rare variants in young men with severe COVID-19. Methods: We prospectively studied males between 18 and 50 years-old without predisposing comorbidities that required at least high-flow nasal oxygen to treat COVID-19. The coding region of TLR7 was sequenced to assess the presence of potentially deleterious variants. Results: TLR7 missense variants were identified in two out of 14 patients (14.3%). Overall, the median age was 38 (IQR 30-45) years. Both variants were not previously reported in population control databases and were predicted to be damaging by in silico predictors. In a 30-year-old patient a maternally inherited variant [c.644A>G; p.(Asn215Ser)] was identified, co-segregating in his 27-year-old brother who also contracted severe COVID-19. A second variant [c.2797T>C; p.(Trp933Arg)] was found in a 28-year-old patient, co-segregating in his 24-year-old brother who developed mild COVID-19. Functional testing of this variant revealed decreased type I and II interferon responses in peripheral mononuclear blood cells upon stimulation with the TLR7 agonist imiquimod, confirming a loss-of-function effect. Conclusions: This study supports a rationale for the genetic screening for TLR7 variants in young men with severe COVID-19 in the absence of other relevant risk factors. A diagnosis of TLR7 deficiency could not only inform on treatment options for the patient, but also enables pre-symptomatic testing of at-risk male relatives with the possibility of instituting early preventive and therapeutic interventions

    Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease

    Get PDF
    STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder

    Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts

    No full text
    Current developments in artificial olfactory systems, also known as electronic nose (e-nose) systems, have benefited from advanced machine learning techniques that have significantly improved the conditioning and processing of multivariate feature-rich sensor data. These advancements are complemented by the application of bioinspired algorithms and architectures based on findings from neurophysiological studies focusing on the biological olfactory pathway. The application of spiking neural networks (SNNs), and concepts from neuromorphic engineering in general, are one of the key factors that has led to the design and development of efficient bioinspired e-nose systems. However, only a limited number of studies have focused on deploying these models on a natively event-driven hardware platform that exploits the benefits of neuromorphic implementation, such as ultra-low-power consumption and real-time processing, for simplified integration in a portable e-nose system. In this paper, we extend our previously reported neuromorphic encoding and classification approach to a real-world dataset that consists of sensor responses from a commercial e-nose system when exposed to eight different types of malts. We show that the proposed SNN-based classifier was able to deliver 97% accurate classification results at a maximum latency of 0.4 ms per inference with a power consumption of less than 1 mW when deployed on neuromorphic hardware. One of the key advantages of the proposed neuromorphic architecture is that the entire functionality, including pre-processing, event encoding, and classification, can be mapped on the neuromorphic system-on-a-chip (NSoC) to develop power-efficient and highly-accurate real-time e-nose systems

    Effect of exogenous IL-37 on immune cells from a patient carrying a potential IL37 loss-of-function variant: A case study

    No full text
    INTRODUCTION: Chronic inflammatory or autoimmune diseases are commonly treated with immunosuppressive medication such as NSAIDs, corticosteroids, or antibodies against specific cytokines (TNF, IL-1 IL-17, IL-23, etc.) or signalling cascades (e.g. JAK-STAT inhibitors). Using sequencing data to locate genetic mutations in relevant genes allows the identification of alternative targets in a patient-tailored therapy setting. Interleukin (IL)-37 is an anti-inflammatory cytokine with broad effects on innate and adaptive immune cell function. Dysfunctional IL-37 expression or signalling is linked to various autoinflammatory disorders. The administration of recombinant IL-37 to hyperinflammatory patients that are non-responsive to standard treatment bears the potential to alleviate symptoms. METHODS: In this case study, the (hyper)responsiveness of immune cell subsets was investigated in a single patient with a seronegative autoimmune disorder who carries a heterozygous stop-gain variant in IL37 (IL37 Chr2(GRCh37):g.113670640G > A NM_014439.3:c.51G > A p.(Trp17*)). As the patient has been non-responsive to blockage of TNF or IL-1 by Etanercept or Anakinra, respectively, additional in-vitro experiments were set out to elucidate whether treatment with recombinant IL-37 could normalise observed immune cell functions. FINDINGS: Characterisation of immune cell function showed no elevated overall production of acute-phase pro-inflammatory cytokines by patient PBMCs and neutrophils at baseline or upon stimulation. T-cell responses were elevated, as was the metabolic activity and IL-1Ra production of PBMCs at baseline. The identified stop-gain variant in IL37 does not result in the absence of the protein in circulation. In line with this, treatment with recombinant IL-37 did overall not dampen immune responses with the exception of the complete suppression of IL-17. CONCLUSION: The heterozygous stop-gain variant in IL37 (IL37 NM_014439.3:c.51G > A p.(Trp17*)) is not of functional relevance as we observed no clear pro-inflammatory phenotype in immune cells of a patient carrying this variant

    Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery

    No full text
    Background: During laparoscopic cholecystectomy, common bile duct (CBD) injury is a rare but severe complication. To reduce the risk of injury, near-infrared (NIR) fluorescent cholangiography using indocyanine green (ICG) has recently been introduced as a novel method of visualizing the biliary system during surgery. To date, several studies have shown feasibility of this technique; however, liver background fluorescence remains a major problem during fluorescent cholangiography. The aim of the current study was to optimize ICG dose and timing for NIR cholangiography using a quantitative intraoperative camera system during open hepatopancreatobiliary (HPB) surgery. Subsequently, these results were validated during laparoscopic cholecystectomy using a laparoscopic fluorescence imaging system. Methods: Twenty-seven patients who underwent NIR imaging using the Mini-FLARE image-guided surgery system during open HPB surgery were analyzed to assess optimal dosage and timing of ICG administration. ICG was intravenously injected preoperatively at doses of 5, 10, and 20 mg, and imaged at either 30 min (early) or 24 h (delayed) post-injection. Next, the optimal doses found for early and delayed imaging were applied to two groups of seven patients (n = 14) undergoing laparoscopic NIR fluorescent cholangiography during laparoscopic cholecystectomy. Results: Median liver-to-background contrast was 23.5 (range 22.1-35.0), 16.8 (range 11.3-25.1), 1.3 (range 0.7-7.8), and 2.5 (range 1.3-3.6) for 5 mg/30 min, 10 mg/30 min, 10 mg/24 h, and 20 mg/24 h, respectively. Fluorescence intensity of the liver was significantly lower in the 10 mg delayed-imaging dose group compared with the early imaging 5 and 10 mg dose groups (p = 0.001), which resulted in a significant increase in CBD-to-liver contrast ratio compared with the early administration groups (p < 0.002). These findings were qualitatively confirmed during laparoscopic cholecystectomy. Conclusion: This study shows that a prolonged interval between ICG administration and surgery permits optimal NIR cholangiography with minimal liver background fluorescence. © 2013 Springer Science+Business Media
    corecore